A Review on Nano-Approaches Against Periodontitis Treatment
DOI:
https://doi.org/10.58260/j.ppmr.2202.0109Keywords:
Periodontitis, enzymes, microflora, biocompatible, microparticles, nanoparticlesAbstract
Periodontitis is a provocative condition of the secretions that destroys the alveolar bone, the formation of periodontal pockets, and the degeneration of periodontal ligaments. WHO estimates that between 10 and 15 percent of people worldwide have severe periodontitis. The development of a wide variety of microflora, particularly anaerobes, in the compartments, the release of toxins and enzymes, and the stimulation of the body's immune system are the causes of the disease. Periodontitis was effectively treated using a variety of local or systemic methods. Currently, site-specific delivery, low dose requirements, bypassing first-pass metabolism, a reduction in gastrointestinal side effects, and other factors make the controlled local drug delivery approach preferable to the general approach because it primarily focuses on improving therapeutic outcomes. It offers a safe and efficient way of therapy overall, which improves patient compliance. Various surgical and mechanical procedures completely failed to eradicate the areas' germs. Numerous polymer-based delivery methods, including fibers, films, chips, strips, microparticles, nanoparticles, and nanofibers manufactured from various natural and synthetic materials, have been investigated to successfully transport various medications. These solutions have good mucoadhesion qualities, are Fill the pockets, have high retention at the target site, and are biocompatible and biodegradable. The study gives a general summary of all the different periodontitis targeted delivery systems that are now available and being created.
References
Flemmig, T.F., 1999. Periodontitis. Annals of periodontology, 4(1), pp.32-37.
Armitage, G.C., 2004. Periodontal diagnoses and classification of periodontal diseases. Periodontology 2000, 34(1), pp.9-21.
Albandar, J.M., 2005. Epidemiology and risk factors of periodontal diseases. Dental Clinics, 49(3), pp.517-532.
Dentino, A., Lee, S., Mailhot, J. and Hefti, A.F., 2013. Principles of periodontology. Periodontology 2000, 61(1), pp.16-53.
Pretzl, B., Sälzer, S., Ehmke, B., Schlagenhauf, U., Dannewitz, B., Dommisch, H., Eickholz, P. and Jockel-Schneider, Y., 2019. Administration of systemic antibiotics during non-surgical periodontal therapy—A consensus report. Clinical oral investigations, 23(7), pp.3073-3085.
Ahmad, N., Ahmad, F.J., Bedi, S., Sharma, S., Umar, S. and Ansari, M.A., 2019. A novel nanoformulation development of eugenol and their treatment in inflammation and periodontitis. Saudi Pharmaceutical Journal, 27(6), pp.778-790.
Rajeshwari, H.R., Dhamecha, D., Jagwani, S., Rao, M., Jadhav, K., Shaikh, S., Puzhankara, L. and Jalalpure, S., 2019. Local drug delivery systems in the management of periodontitis: A scientific review. Journal of Controlled Release, 307, pp.393-409.
Mesa, F., Mesa-López, M.J., Egea-Valenzuela, J., Benavides-Reyes, C., Nibali, L., Ide, M., Mainas, G., Rizzo, M. and Magan-Fernandez, A., 2022. A New Comorbidity in Periodontitis: Fusobacterium nucleatum and Colorectal Cancer. Medicina, 58(4), p.546.
Lee, J.H., Lee, J.S., Park, J.Y., Choi, J.K., Kim, D.W., Kim, Y.T. and Choi, S.H., 2015. Association of lifestyle-related comorbidities with periodontitis: a nationwide cohort study in Korea. Medicine, 94(37).
Shcherba, V., Kyryliv, M., Bekus, I., Krynytska, I., Marushchak, M. and Korda, M., 2020. A comparative study of connective tissue metabolism indices in experimental comorbidity-free periodontitis and periodontitis combined with thyroid dysfunction. Journal of medicine and life, 13(2), p.219.
Virto, L., Cano, P., Jiménez‐Ortega, V., Fernández‐Mateos, P., González, J., Esquifino, A.I. and Sanz, M., 2018. Obesity and periodontitis: an experimental study to evaluate periodontal and systemic effects of comorbidity. Journal of periodontology, 89(2), pp.176-185.
Listgarten, M.A., 1986. Pathogenesis of periodontitis. Journal of clinical periodontology, 13(5), pp.418-425.
Borrell, L.N. and Papapanou, P.N., 2005. Analytical epidemiology of periodontitis. Journal of clinical periodontology, 32, pp.132-158.
Milovanova-Palmer, J. and Pendry, B., 2018. Is there a role for herbal medicine in the treatment and management of periodontal disease?. Journal of Herbal Medicine, 12, pp.33-48.
Shekar, B.R.C., Nagarajappa, R., Suma, S. and Thakur, R., 2015. Herbal extracts in oral health care-A review of the current scenario and its future needs. Pharmacognosy reviews, 9(18), p.87.
Isola, G., 2020. Current evidence of natural agents in oral and periodontal health. Nutrients, 12(2), p.585.
Iviglia, G., Kargozar, S. and Baino, F., 2019. Biomaterials, current strategies, and novel nano-technological approaches for periodontal regeneration. Journal of functional biomaterials, 10(1), p.3.
Pitones-Rubio, V., Chávez-Cortez, E.G., Hurtado-Camarena, A., González-Rascón, A. and Serafín-Higuera, N., 2020. Is periodontal disease a risk factor for severe COVID-19 illness?. Medical hypotheses, 144, p.109969.
Borrell, L.N. and Papapanou, P.N., 2005. Analytical epidemiology of periodontitis. Journal of clinical periodontology, 32, pp.132-158.
Mehrotra, N. and Singh, S., 2022. Periodontitis. In StatPearls [Internet]. StatPearls Publishing.
Timmerman, M.F. and Van der Weijden, G.A., 2006. Risk factors for periodontitis. International journal of dental hygiene, 4(1), pp.2-7.
Tonetti, M.S., D'Aiuto, F., Nibali, L., Donald, A., Storry, C., Parkar, M., Suvan, J., Hingorani, A.D., Vallance, P. and Deanfield, J., 2007. Treatment of periodontitis and endothelial function. New England Journal of Medicine, 356(9), pp.911-920.
Wayakanon, K., Thornhill, M.H., et al, 2013. Polymersome-mediated intracellular delivery of antibiotics to treat Porphyromonas gingivalis-infected oral epithelial cells. FASEB J. 27 (11), 4455–4465.
Mahmoud, M.M., Samy, W.M., 2016. Enhanced Periodontal Regeneration by Novel Single Application Sustained Release NanoStructured Doxycycline Films. Curr. Drug Deliv. 13 (6), 899–908.
Bai, B., Gu, C., et al, 2021. Polydopamine functionalized mesoporous silica as ROS-sensitive drug delivery vehicles for periodontitis treatment by modulating macrophage polarization. Nano Res. 14 (12), 4577–4583.
Lin, J.H., Feng, F., et al, 2018. Modulation of periodontitis progression using pH-responsive nanosphere encapsulating metronidazole or N-phenacylthialzolium bromide. J. Periodontal Res. 53 (1), 2228.
Emmanuel, R., Saravanan, M., et al, 2017. Antimicrobial efficacy of drug blended biosynthesized colloidal gold nanoparticles from Justicia glauca against oral pathogens: A nanoantibiotic approach. Microb. Pathog. 113, 295–302.
Dhingra, K., Dinda, A.K., et al, 2022. Mucoadhesive silver nanoparticle-based local drug delivery system for peri-implantitis management in COVID-19 era. Part 1: antimicrobial and safety in-vitro analysis. J. Oral Biol. Craniofac. Res. 12 (1), 177–181.
Toledano-Osorio, M., Manzano-Moreno, F.J., et al, 2021. Doxycycline-doped membranes induced osteogenic gene expression on osteoblastic cells. J. Dent. 109, 103676.
de Carvalho Bernardo, W.L., Boriollo, M.F.G., et al, 2021. Antimicrobial effects of silver nanoparticles and extracts of Syzygium cumini flowers and seeds: Periodontal, cariogenic and opportunistic pathogens. Arch. Oral Biol. 125, 105101.
Ranjbar-Mohammadi, M., Zamani, M., et al, 2016. Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration. Mater. Sci. Eng., C 58, 521–531.
Lee, B.S., Lee, C.C., et al, 2016. Controlled-release of tetracycline and lovastatin by poly(D, L-lactide-co-glycolide acid)-chitosan nanoparticles enhances periodontal regeneration in dogs. Int. J. Nanomed. 11, 285–297.
Lecio, G., Ribeiro, F.V., et al, 2020. Novel 20% doxycycline-loaded PLGA nanospheres as adjunctive therapy in chronic periodontitis in type-2 diabetics: randomized clinical, immune and microbiological trial. Clin. Oral Investig. 24 (3), 1269–1279
Madi, M., Pavlic, V., et al, 2018. The anti-inflammatory effect of locally delivered nano-doxycycline gel in therapy of chronic periodontitis. Acta Odontol. Scand. 76 (1), 71–76
Madhumathi, K., Sampath Kumar, T.S., 2014. Regenerative potential and anti-bacterial activity of tetracycline loaded apatitic nanocarriers for the treatment of periodontitis. Biomed. Mater. 9, (3) 035002.
M Friedman and G Golomb, 2006
Higashi K, Morisaki K, Hayashi S, Kitamura M, Fujimoto N, Kimura S, Ebisu S, Okada H. Local ofloxacin delivery using a controlled-release insert (PT-01) in the human periodontal pocket. J Periodontal Res. 1990 Jan;25(1):1-5. doi: 10.1111/j.1600-0765.1990.tb01201.x. PMID: 2137167.
Maze GI, Reinhardt RA, Agarwal RK, Dyer JK, Robinson DH, DuBois LM, Tussing GJ, Maze CR. Response to intracrevicular controlled delivery of 25% tetracycline from poly(lactide/glycolide) film strips in SPT patients. J Clin Periodontol. 1995 Nov;22(11):860-7. doi: 10.1111/j.1600-051x.1995.tb01785.x. PMID: 8550863.
Tonetti M, Cugini MA, Goodson JM. Zero-order delivery with periodontal placement of tetracycline-loaded ethylene vinyl acetate fibers. J Periodontal Res. 1990;25(4):243–9. [PubMed] [Google Scholar]
Lindhe J, Heijl L, Goodson JM, Socransky SS. Local tetracycline delivery using hollow fiber devices in periodontal therapy. J Clin Periodontol. 1979;6:141–9. [PubMed]
Published
How to Cite
License
Copyright (c) 2022 Global Journal of Pharma and Paramedical Research(PPMR) [ISSN: 2583-4479]
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.