PHYTOPHARMACETICAL AND ANTICANCER PROPERTIES OF NIGELLA SATIVA LINN SEEDS: A COMPREHENSIVE REVIEW
DOI:
https://doi.org/10.58260/j.ppmr.2202.0101Keywords:
Nigella sativa, Thymoquinone, anticancer, phytochemicalsAbstract
Cancer is a growing health problem around the world and is second leading cause of death after heart disease. Although in the last century there has been effort to control the disease using various synthetic as well as herbal drugs but still not been controlled satisfactorily. Nigella sativa is one such herb which has very high potential in preventing cancer. There are various categories of phytochemicals that have been isolated from the plant and mainly terpene category of phytochemicals in the likes of Thymoquinone, carvone, germacrene, sabinene, alphahederin are prevalent. Some other phytochemicals that has been isolated are nigellone, nigellidone (alkaloids) cycloartenol, tirucallol, some fatty acids as well. Mainly two compounds have been concentrated upon for cancer, they are thymoquinone and alpha hederin N. sativa has been known to shown high efficacy in cancer and mainly works by promoting Caspase 8,9,3, suppressing Akt and NF-kB. Even some semisynthetic derivative like poloxin, kalapanaxosaponin I and also combination therapy has been found to be effective against cancer.
References
Tomlinson, T. R., & Akerele, O. (Eds.). (2015). Medicinal plants: their role in health and biodiversity. University of Pennsylvania press.
Khare, C. P. (2004). Indian herbal remedies: rational Western therapy, ayurvedic, and other traditional usage, Botany. Springer science & business media.
Van Wyk, B. E., & Wink, M. (2017). Medicinal plants of the world .
Sharma, P., Yelne, M., Dennis, T., Joshi, A., & Billore, K. (2000). Database on medicinal plants used in Ayurveda.
Al-Oqail, M. M., Al-Sheddi, E. S., Al-Massarani, S. M., Siddiqui, M. A., Ahmad, J., Musarrat, J., & Farshori, N. N. (2017). Nigella sativa seed oil suppresses cell proliferation and induces ROS dependent mitochondrial apoptosis through p53 pathway in hepatocellular carcinoma cells. South African journal of botany, 112, 70-78.
Al-Sheddi, E. S., Farshori, N. N., Al-Oqail, M. M., Musarrat, J., Al-Khedhairy, A. A., & Siddiqui, M. A. (2014). Cytotoxicity of Nigella sativa seed oil and extract against human lung cancer cell line. Asian Pac J Cancer Prev, 15(2), 983-7.
Al-Bukhari, M. I. (1976). Sahi Al-Bukhari, the collection of authentic sayings of Prophet Mohammad (Peace be upon him).
Kooti, W., Hasanzadeh-Noohi, Z., Sharafi-Ahvazi, N., Asadi-Samani, M., & Ashtary-Larky, D. (2016). Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa). Chinese journal of natural medicines, 14(10), 732-745.
Zohary, D., Hopf, M., & Weiss, E. (2012). Domestication of Plants in the Old World: The origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin. Oxford University Press on Demand.
Paarakh, P. M. (2010). Nigella sativa Linn.–A comprehensive review.
Naz, H. (2011). Nigella sativa: the miraculous herb. Pak. J. Biochem. Mol. Biol, 44(1), 44- 48.
Datta, A. K. (2012). Black cumin (Nigella sativa L.)-A review. J. Plant Developmen. Sci., 4, 1-43.
Kumbhakar, D. V., Datta, A. K., Mandal, A., Das, D., Gupta, S., Ghosh, B., Dey, S. (2016). Effectivity of copper and cadmium sulphide nanoparticles in mitotic and meiotic cells of Nigella sativa L.(black cumin)–can nanoparticles act as mutagenic agents? J. Exp. Nanosci., 11(11), 823-839
Cho Ping, N., Hashim, N. H., Adli, H., & Sharifah, D. (2014). Effects of Nigella sativa (Habbatus sauda) oil and nicotine chronic treatments on sperm parameters and testis histological features of rats. Evid.Based Complement. and Alternat. Med., 2014.
Atta, M. B. (2003). Some characteristics of nigella (Nigella sativa L.) seed cultivated in Egypt and its lipid profile. Food Chem., 83(1), 63-68.
Asdadi, A., Harhar, H., Gharby, S., Bouzoubaâ, Z., Yadini, A. E., Moutaj, R., & Hassani, L. M. I. (2014). Chemical composition and antifungal activity of Nigella sativa L. oil seed cultivated in Morocco. International Journal of Pharmaceutical Science Invention, 3(11), 09- 15.
Bourgou, S., Pichette, A., Lavoie, S., Marzouk, B., & Legault, J. (2012). Terpenoids isolated from Tunisian Nigella sativa L. essential oil with antioxidant activity and the ability to inhibit nitric oxide production. Flavour and fragrance journal, 27(1), 69-74.
Malik, S., Hasan, S. S., Choudhary, M. I., Ni, C. Z., & Clardy, J. (1995). Nigellidine—a new indazole alkaloid from the seeds of Nigella sativa. Tetrahedron letters, 36(12), 1993-1996.
Hammad Shafiq, A. A., Masud, T., & Kaleem, M. (2014). Cardio-protective and anti-cancer therapeutic potential of Nigella sativa. Iranian journal of basic medical sciences, 17(12), 967.
Babayan, V. K., Koottungal, D., & Halaby, G. A. (1978). Proximate analysis, fatty acid and amino acid composition of Nigella sativa L. seeds. Journal of Food Science, 43(4), 1314- 1315.
Hikmah, Z., Endaryanto, A., Ugrasena, I.D.G., Rahaju, A.S. and Arifin, S., 2022. Nigella sativa L. as immunomodulator and preventive effect on renal tissue damage of lupus mice induced by pristane. Heliyon, 8(4), p.e09242.
Banerjee, S., Azmi, A. S., Padhye, S., Singh, M. W., Baruah, J. B., Philip, P. A.,Mohammad, R. M. (2010). Structure-activity studies on therapeutic potential of Thymoquinone analogs in pancreatic cancer. Pharm. Res., 27(6), 1146-1158.
Agbaria, R., Gabarin, A., Dahan, A., & Ben-Shabat, S. (2015). Anticancer activity of Nigella sativa (black seed) and its relationship with the thermal processing and quinone composition of the seed. Drug Des Devel Ther., 9, 3119.
Randhawa, M. A., & Alghamdi, M. S. (2011). Anticancer activity of Nigella sativa (black seed)—a review. Am. J. Chin. Med, 39(06), 1075-1091
Tavakkoli, A., Ahmadi, A., Razavi, B. M., & Hosseinzadeh, H. (2017). Black seed (Nigella sativa) and its constituent thymoquinone as an antidote or a protective agent against natural or chemical toxicities. Iranian J. of Pharm. Res. 16, 2-23.
Al-Ghamdi, M. (2001). The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa. J. Ethnopharmacol, 76(1), 45-48.
Worthen, D. R., Ghosheh, O. A., & Crooks, P. (1998). The in vitro anti-tumor activity of some crude and purified components of blackseed, Nigella sativa L. Anticancer Res., 18(3A), 1527-1532.
Norwood, A., Tucci, M., & Benghuzzi, H. (2007). A comparison of 5-fluorouracil and natural chemotherapeutic agents, EGCG and thymoquinone, delivered by sustained drug delivery on colon cancer cells. Biomed Sci Instrum, 43, 272-277.
El-Najjar, N., Chatila, M., Moukadem, H., Vuorela, H., Ocker, M., Gandesiri, M., GaliMuhtasib, H. (2010). Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling. Apop., 15(2), 183-195.
Kumara, S. S. M., & Huat, B. T. K. (2001). Extraction, isolation and characterisation of antitumor principle, α-hederin, from the seeds of Nigella sativa. Planta med., 67(01), 29-32.
Rooney, S., & Ryan, M. (2005). Effects of alpha-hederin and thymoquinone, constituents of Nigella sativa, on human cancer cell lines. Anticancer Res., 25(3B), 2199-2204.
Ng, W. K., Yazan, L. S., & Ismail, M. (2011). Thymoquinone from Nigella sativa was more potent than cisplatin in eliminating of SiHa cells via apoptosis with down-regulation of Bcl-2 protein Toxicol. In Vitro, 25(7), 1392-1398.
Öberg, F., Haseeb, A., Ahnfelt, M., Pontén, F., Westermark, B., & El-Obeid, A. (2009). Herbal melanin activates TLR4/NF-κB signaling pathway. Phytomedicine, 16(5), 477-484.
Islam, M. T. (2016). Biological activities and therapeutic promises of Nigella sativa L. Int J Pharm Sci & Scient Res, 2(6), 237-252.
Cemek, M., Enginar, H., Karaca, T., & Ünak, P. (2006). In Vivo Radioprotective Effects of Nigella sativa L Oil and Reduced Glutathione Against Irradiation‐Induced Oxidative Injury and Number of Peripheral Blood Lymphocytes in Rats. Photochemistry and photobiology, 82(6), 1691-1696.
Gudmundsson, J., Sulem, P., Gudbjartsson, D. F., Blondal, T., Gylfason, A., Agnarsson, B. A., Jakobsdottir, M. (2009). Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility. Nature Genet., 41(10), 1122-1126.
Banerjee, S., Padhye, S., Azmi, A., Wang, Z., Philip, P. A., Kucuk, O., Mohammad, R. M. (2010). Review on molecular and therapeutic potential of thymoquinone in cancer. Nutr.Cancer, 62(7), 938-946.
Feller, G., Kugel, A., Moonshine, D., Chalifa-Caspi, V., Scholz, M., Prüfer, D., Ofir, R. (2010). African Descents Are More Sensitive Than European Descents to the Antitumor Compounds α-Hederin and Kalopanaxsaponin I. Planta Med., 76(16), 1847-1851.
Nagi, M. N., Alam, K., Badary, O. A., Al‐Shabanah, O. A., Al‐Sawaf, H. A., & Al‐Bekairi, A. M. (1999). Thymoquinone protects against carbon tetrachloride hetatotoxicity in mice via an antioxidant mechanism. IUBMB Life, 47(1), 153-159.
Effenberger-Neidnicht, K., & Schobert, R. (2011). Combinatorial effects of thymoquinone on the anti-cancer activity of doxorubicin. Cancer Chemother. and Pharmacol., 67(4), 867-874.
Banerjee, S., Pandey, S., Mukherjee, P., Sayeed, A., Pandurangi, A. V., George, S., & Mohideen, S. S. (2017). Investigation of cytotoxicity induced by Nigella sativa and Azadirachta indica using MDA-MB-231, HCT 116 and SHSY5Y cell lines. Phcog. J., 9(2).
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.